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Abstract

We introduce a new fractional oscillator process which can be obtained as a
solution of a stochastic differential equation with two fractional orders. Basic
properties such as fractal dimension and short-range dependence of the process
are studied by considering the asymptotic properties of its covariance function.
By considering the fractional oscillator process as the velocity of a diffusion
process, we derive the corresponding diffusion constant, fluctuation–dissipation
relation and mean-square displacement. The fractional oscillator process can
also be regarded as a one-dimensional fractional Euclidean Klein–Gordon
field, which can be obtained by applying the Parisi–Wu stochastic quantization
method to a nonlocal Euclidean action. The Casimir energy associated with the
fractional field at positive temperature is calculated by using the zeta function
regularization technique.

PACS numbers: 02.50.Ey, 03.70.+k, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fractional calculus has found applications in diverse fields ranging from physical sciences,
engineering to biological sciences and economics. Many of the recent advances in fractional
calculus are motivated by the modern applications of fractional integro-differential equations
in various fields, in particular physics. One of the main reasons for its popularity in modeling
various transport properties in complex heterogeneous and disordered media is that it provides
a natural setting for describing processes with memory and is fractal or multifractal in nature.
For example, various versions of fractional diffusion equations and fractional Langevin-type
equations have been proposed to model anomalous diffusion [1–7], and both deterministic and
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stochastic fractional equations are used to describe non-Debye dielectric relaxation phenomena
[6–9].

One way to obtain concrete realization of a particular fractional model is to associate
it with a fractional generalization of an ordinary stochastic process. The most well-known
among these fractional stochastic processes include fractional Brownian motion [10, 11] and
fractional Levy motion [11, 12]. Other fractional stochastic processes include fractional
Brownian motion of Riemann–Liouville type [13], fractional Ornstein–Uhlenbeck process
or fractional oscillator process [14–17], etc. Works on extending stochastic processes
characterized by a single index to corresponding processes with two indices or processes with
variable index have recently attracted considerable interest. For example, fractional Brownian
motion parametrized by a Hurst index H has recently been generalized to the bifractional
Brownian motion [18, 19] characterized by two indices, with fractional Brownian motion as a
special case. Other examples of stochastic processes with two indices are the class of Riesz–
Bessel motions [20] and Gaussian processes with generalized Cauchy covariance (generalized
Cauchy class) [21, 22]. In general, processes parametrized by two indices can provide more
flexibility in their applications in physical phenomena. In particular, Riesz–Bessel motion and
the process with generalized Cauchy class covariance both have the advantage that the two
indices provide separate characterization of the fractal dimension or self-similar property, a
local property, and the long-range dependence, a global property. This is in contrast to models
based on fractional Brownian motion or fractional Brownian noise which use a single index
to characterize these two properties. Models based on a stochastic process with single index
seem inadequate. For example, it has been noted that fractional Gaussian noise is not suitable
to model network traffic for all scales since at very small timescales the fluctuations in the
traffic are no longer statistically self-similar [23].

On the other hand, there are also many natural phenomena that exhibit short memory,
ranging from coding regions of DNA sequences to fluctuations of an electropore of nano size
[24–29]. As a result, in order to obtain separate characterization of the local sample path
regularity and the short memory property, it is desirable to extend short-range dependent
fractional processes such as a fractional Ornstein–Uhlenbeck process (also known as a
fractional oscillator process which is preferred as the fractional Ornstein–Uhlenbeck process
has often been used for the process obtained from the Langevin equation driven by fractional
Brownian motion) to the corresponding fractional process with two indices. In [30], we
have attempted such an extension by using Weyl and Riemann–Liouville shifted fractional
derivatives. The resulted process can be regarded as a generalization of the fractional Ornstein–
Uhlenbeck process with single index [16, 17]. However, such a process does not inherit the
simple form of the spectral density of its single-index counterpart. This leads to some problems
in our application to modeling wind speed based on Von Kárman-type spectral density
[27, 30]. One of our main aims is to obtain a fractional oscillator process with two indices
so that it can be regarded as a one-dimension fractional Euclidean scalar massive field with
two indices just like the case with single index. The result in [30] does not allow us to
do this. The aim of this paper is to address this problem by introducing a new type of
fractional Gaussian process indexed by two indices so that it can be identified as a fractional
Euclidean field in one dimension, in addition to that its short-range dependence property
and fractal dimension can be separately characterized. Keeping this in mind, we introduce
a new fractional Langevin equation by replacing the Weyl or Riemann–Liouville fractional
derivatives in [30] by the Riesz fractional derivative [31, 32]. If we consider the fractional
oscillator process as a one-dimensional fractional Euclidean field, our use of Riesz derivative
does not pose any problem. However, if it is to be considered as a velocity process in the
sense of Ornstein–Uhlenbeck process with two fractional indices, one may face a difficulty
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in giving a causal interpretation. Nevertheless, this would not deny the possibility of using
this fractional oscillator process for modeling short memory processes [24–29]. The ability
to identify the fractional oscillator process with a fractional Euclidean massive field permits
us to perceive the statistical interpretation of the fractional Klein–Gordon field, and hence the
calculation of quantity such as its partition energy and the associated Casimir energy.

This paper is organized as follows. Section 2 introduces the generalized fractional
oscillator process as a solution of a stochastic differential equation with two fractional orders.
Despite that the covariance of this process does not have a closed analytic form, its basic
properties can be studied by considering the asymptotic properties of its covariance. In
particular, the fractal dimension and short-range dependence are studied. In section 4, we
interpret the fractional oscillator process as a velocity process and study the long-time behavior
of the corresponding position process. The fluctuation–dissipation relation is derived and the
possibility of using the process to model anomalous diffusion is discussed. In section 5, we
consider the fractional oscillator process as a one-dimensional Euclidean fractional scalar field.
Stochastic quantization of the field at zero and finite temperatures is carried out. We proceed
to calculate the Casimir energy associated with the fractional field at finite temperature by
employing the zeta function regularization technique. In the last section, we briefly discuss
possible applications and generalizations of the results obtained.

2. Fractional oscillator process with two indices

In this section we define the fractional oscillator process with two indices. Recall that an
ordinary oscillator process X(t) can be obtained as a solution to the Langevin equation

(Dt + λ)X(t) = η(t), (2.1)

where η(t) = dB(t)/dt is the standard white noise with

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = δ(t − t ′),

B(t) is the standard Brownian motion and λ is a positive constant. By using Fourier transform,
the solution of (2.1) can be written as

X(t) = 1√
2π

∫
R

eiωt η̂(ω)

iω + λ
dω,

where η̂(ω) is the Fourier transform of the standard white noise η(t):

η̂(ω) = 1√
2π

∫ ∞

−∞
e−itω dB(t).

In the literature, X(t) is known as the oscillator process or the Ornstein–Uhlenbeck process.
It is a centered stationary Gaussian process with the covariance function

〈X(s)X(s + t)〉 = 1

2π

∫
R

eiωt

ω2 + λ2
dω = e−λ|t |

2λ
. (2.2)

One can also regard the oscillator process X(t) as a one-dimensional Euclidean scalar Klein–
Gordon field with mass λ and propagator given by the spectral density

S(ω) = 1

2π

1

ω2 + λ2
.

Since fractal dynamics have increasingly played an important role in various transport
phenomena in complex media, it would be interesting to investigate various possible
generalizations of X(t) to its fractional counterpart. One direct way is to replace the differential
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operator Dt in (2.1) by the fractional differential operator aDt to obtain the following type-I
fractional Langevin equation [3, 15, 33, 34]:(

aD
α
t + λ

)
Xα,1(t) = η(t), (2.3)

where the fractional derivative aDt is defined as [2, 31, 35]:

(
aD

α
t f

)
(t) = 1

�(n − α)

(
d

dt

)n ∫ t

a

f (u)

(t − u)α−n+1
du, n − 1 < α < n.

When a = 0, 0D
α
t is known as the Riemann–Liouville fractional derivative and for

a = −∞, −∞Dα
t is called the Weyl fractional derivative. A similar process with the Caputo

fractional derivative [2, 31, 35] was considered in [36] and was also called the fractional
oscillator. In [37–42], another class of fractional oscillators was defined by using fractional
derivatives or fractional integrations, but with the noise η(t) replaced by a deterministic driving
force F(t).

A less considered generalization of (2.1) is to fractionalize the operator (aDt +λ) to obtain
the following type-II fractional Langevin equation [16, 17]:

(aDt + λ)γ X1,γ (t) = η(t), γ > 0. (2.4)

The shifted fractional derivative (aDt + λ)γ can be informally defined as [43, 44]

(aDt + λ)γ =
∞∑

j=0

(
γ

j

)
λj

aD
α(γ−j)
t . (2.5)

A more rigorous treatment can be carried out by using hypersingular integrals [45]. Gay and
Heyde [43, 44] used (2.5) with α = 1, γ > 0 in the study of a certain class of random fields. It
is also used in defining the fractional Klein–Gordon scalar massive field (−
 + m2)γ φ(t) = 0
[46, 47]. Compared to the process Xα,1(t) (2.3), the process X1,γ (t) (2.4) has the advantage
that its covariance function has a closed form.

Recently, we have combined the investigation on these two types of processes and studied
the more general case [30]:(

aD
α
t + λ

)γ
Xα,γ (t) = η(t). (2.6)

If the Weyl fractional derivative is used in (2.6), then for αγ > 1/2, Xα,γ (t) turns out to be a
centered stationary Gaussian process with a representation

Xα,γ (t) = 1√
2π

∫
R

eiωt η̂(ω)

((iω)α + λ)γ
dω,

and the covariance function

〈Xα,γ (s)Xα,γ (s + t)〉 = 1

2π

∫
R

eiωt

|(iω)α + λ|2γ
dω = 1

2π

∫
R

eiωt(|ω|2α + 2λ|ω| cos πα
2 + λ2

)γ dω.

(2.7)

The properties of the process Xα,γ (t) have been studied in [30]. However, the above
generalization contains an unsatisfactory aspect, namely its spectral density

S(ω) = 1

2π

1(|ω|2α + 2λ|ω| cos πα
2 + λ2

)γ (2.8)

has a complicated form. When α = 1, the spectral density simplifies to

S(ω) = 1

2π

1

(|ω|2 + λ2)γ
. (2.9)
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From the perspective of physical modeling, it is desirable to study a centered stationary
Gaussian process Xα,γ (t) indexed by two parameters α, γ with α ∈ (0, 1], γ > 0, and with
spectral density given by the simpler form

Sα,γ (ω) = 1

2π

1

(|ω|2α + λ2)γ
(2.10)

compared to (2.8), which reduces to (2.9) when α = 1. The spectral density (2.10) shows that
the covariance function Cα,γ (t) = 〈Xα,γ (s + t)Xα,γ (s)〉 of Xα,γ (t) is

Cα,γ (t) = 1

2π

∫ ∞

−∞

eitω

(|ω|2α + λ2)γ
dω, (2.11)

and Xα,γ (t) has a representation given by

Xα,γ (t) = 1√
2π

∫
R

eiωt η̂(ω)

(|ω|2α + λ2)
γ

2

dω (2.12)

when αγ > 1/2. This later formula (2.12) signifies that Xα,γ (t) is a solution to the following
fractional stochastic differential equation:

[(−
)α + λ2]
γ

2 Xα,γ (t) = η(t),

or equivalently, the equation(
D2α

t + λ2) γ

2 Xα,γ (t) = η(t), (2.13)

where D2α
t is the Riesz derivative defined by [31, 32]

D2α
t f := (−
)αf := F−1(|ω|2αf̂ (ω)),

with f̂ := F(f ) the Fourier transform of f . The fractional operator [(−
)α + λ2]
γ

2

can be linked to the Bessel potential [45]. To avoid introducing too many different
terminologies, we also call Xα,γ (t) a fractional oscillator process. It can also be known as a
fractional Ornstein–Uhlenbeck process. Some simulations of the process Xα,γ (t) are given in
figure 1.

Here we would like to remark that when αγ � 1/2, Xα,γ (t) only exists as a generalized
stochastic process, in the sense of generalized functions. Namely, for a Schwarz class test
function f (t),

〈Xα,γ (t), f (t)〉 =
∫

R

f̂ (−ω)η̂(ω)

(|ω|2α + λ2)
γ

2

dω,

where f̂ (ω) is the Fourier transform of f .
We would also like to remark that when α ∈ (0, 1], γ > 0 and λ = 1, the function

2πSα,γ (t) appears as the covariance function of the Gaussian process with generalized Cauchy
covariance [21]. Therefore, the function Cα,γ (t) is positive. This implies that the random
process Xα,γ (t) is a persistent process.

The two fractional generalizations Xα,γ (t) and Xα,γ (t) of an ordinary oscillator process do
not give the same solutions since they give rise to different spectral densities. However, if we
would like to regard the fractional oscillator process as a one-dimensional fractional Euclidean
Klein–Gordon field, (2.13) is a one-dimensional Klein–Gordon equation with two fractional
orders, and the covariance function (2.11) becomes the propagator of the corresponding
fractional Klein–Gordon field φα,γ (t). We shall show in section 5 that φα,γ (t) can be
obtained by applying Parisi–Wu stochastic quantization [48] involving a nonlocal Euclidean
action.
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Figure 1. Some simulations of Xα,γ (t) for different values of α and γ .

3. Asymptotic behaviors of the covariance function Cα, γ(t) and sample path properties

of Xα, γ(t)

The study of sample path properties of a stochastic process such as its local regularity and
long-time behavior is important for determining the parameters when we want to apply the
process for modeling. In this section, we first derive the asymptotic behavior of the covariance
function Cα,γ (t) at small and large time, and then apply the results to derive the local regularity
of the sample paths of Xα,γ (t) and its short memory property.

3.1. Asymptotic behaviors of the covariance function Cα,γ (t)

When α = 1, γ > 0, the covariance function C1,γ (t) (2.11) has the following closed form
[16]:

C1,γ (t) = 21/2−γ

√
π�(γ )

( |t |
λ

)γ−1/2

Kγ−1/2(λ|t |), (3.1)

where Kν(z) is the modified Bessel function of second kind or the MacDonald function.
However, the covariance function Cα,γ (t) in general does not exist in a closed analytic form.
In fact, since the spectral density (2.10) has the same functional form as the characteristic
function of the generalized Linnik distribution [49], the covariance function Cα,γ (t) (2.11) has
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the same functional form as the Linnik probability density function, whose analytic properties
have been studied in [49, 50]. In particular, one can obtain the following integral representation
for the covariance function Cα,γ (t):

Cα,γ (t) = 1

π
Im

∫ ∞

0

e−u|t | du

(λ2 + e−iπαu2α)γ
. (3.2)

It turns out that the analytic properties of the Linnik probability density function depend on
the arithmetic nature of the parameters α and γ ; and the conditions imposed on α and γ are
rather complicated and are not of practical interest. Therefore, we shall use different methods
for studying the asymptotic behavior of the covariance function Cα,γ (t) that are more suitable
for various applications.

For the properties of Xα,γ (t) that we are interested in, such as its fractal dimension, long
or short-range dependence, it suffices for us to know the leading behavior of the variance of
the associated increment process

σ 2
α,γ (t) = 〈[Xα,γ (s + t) − Xα,γ (s)]2〉 = 2Cα,γ (0) − 2Cα,γ (t) (3.3)

for t → 0 and the leading behavior of Cα,γ (t) for t → ∞.
First, we examine the behavior of σ 2

α,γ (t) when t → 0. We impose the restriction
αγ > 1/2 so that Xα,γ (t) has finite variance and (3.3) is well defined. Under this restriction,
the variance Cα,γ (0) is given by (#3.251, no.11, [51])

Cα,γ (0) = 1

π

∫ ∞

0

dω

(ω2α + λ2)γ

= 1

2πα

�
(

1
2α

)
�

(
γ − 1

2α

)
�(γ )

λ
1
α
−2γ

= λ
1
α
−2γ

2α�(γ )

�
(

1
2α

)
�

(
1 − γ + 1

2α

)
sin

(
π

(
γ − 1

2α

)) , (3.4)

where the identity −z�(z)�(−z) = π/ sin(πz) has been used. Our result is in agreement
with that of Erdogan and Ostrovskii [49]. On the other hand, when αγ < 1/2, the covariance
of the generalized Gaussian process Xα,γ (t) satisfies

〈Xα,γ (t)Xα,γ (t ′)〉 = Cα,γ (|t − t ′|) = 1

π

∫ ∞

0

cos(ω|t − t ′|)
(ω2α + λ2)γ

dω

= |t − t ′|2αγ−1

π

∫ ∞

0

cos ω

(ω2α + λ2|t − t ′|2α)γ
dω

= |t − t ′|2αγ−1

π

∫ ∞

0

cos ω

ω2αγ
dω + o(|t − t ′|2αγ−1)

= �(1 − 2αγ )
sin(παγ )

π
|t − t ′|2αγ−1 + o(|t − t ′|2αγ−1)

as |t − t ′| → 0. We have used #3.761, no. 9 in [51].
Now we return to the case of ordinary fields. To obtain the leading behavior of

σ 2
α,γ (t) = 2Cα,γ (0) − 2Cα,γ (t) = 2

π

∫ ∞

0

1 − cos(ω|t |)
(λ2 + ω2α)γ

dω, (3.5)

we consider the cases 1/2 < αγ < 3/2, αγ > 3/2 and αγ = 3/2 separately.
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Case I. When 1/2 < αγ < 3/2, (3.5) is equal to

σ 2
α,γ (t) = 4

π

∫ ∞

0

sin2
(

ω|t |
2

)
(λ2 + ω2α)γ

dω

= 4|t |2αγ−1

π

∫ ∞

0

sin2(ω/2)

(ω2α + λ2|t |2α)γ
dω

= 4|t |2αγ−1

π

∫ ∞

0
ω−2αγ sin2

(ω

2

)
dω + o(|t |2αγ−1)

= − |t |2αγ−1

cos(παγ )�(2αγ )
+ o(|t |2αγ−1) as t → 0. (3.6)

We have used #3.823 of [51] in the last step. Equation (3.6) shows that when 1/2 < αγ < 3/2
and t → 0, the leading term of σ 2

α,γ (t) is of order |t |2αγ−1. If we replace αγ by H + 1/2, then
(3.6) becomes

σ 2
α,γ (t) ∼ |t |2H

sin(πH)�(2H + 1)
+ o(|t |2H ) as t → 0,

which shows that the short-time asymptotic behavior of σ 2
α,γ (t) is characterized by the index

H = αγ − 1/2.

Case II. For αγ > 3/2, using 1 − cos(ω|t |) = 1
2ω2|t |2 + O(|t |4) as t → 0, we have

σ 2
α,γ (t) = |t |2

π

∫ ∞

0

ω2 dω

(λ2 + ω2α)γ
+ o(|t |2)

= |t |2
2πα

λ
3
α
−2γ

�
(

3
2α

)
�

(
γ − 3

2α

)
�(γ )

+ o(|t |2). (3.7)

This shows that after crossing the point αγ = 3/2, the leading behavior of σ 2
α,γ (t) is of order

|t |2, which does not depend on the parameters α and γ .

Case III. The borderline case αγ = 3/2 is more complicated. First, we find as in case I that

σ 2
α,γ (t) = 4|t |2

π

∫ ∞

0

sin2(ω/2)

(ω2α + λ2|t |2α)γ
dω.

The integral ∫ ∞

0

sin2(ω/2)

(ω2α + λ2|t |2α)γ
dω (3.8)

does not converge when t → 0 because of the singularity at the origin of the integrand
ω−2αγ sin2(ω/2). Since sin z ∼ z when z → 0, we write (3.8) as a sum of two terms A1(t)

and A2(t), where

A1(t) =
∫ 1

0

(ω/2)2

(ω2α + λ2|t |2α)γ
dω

reflects the divergence of (3.8) when t → 0; and

A2(t) =
∫ 1

0

sin2(ω/2) − (ω/2)2

(ω2α + λ2|t |2α)γ
dω +

∫ ∞

1

sin2(ω/2)

(ω2α + λ2|t |2α)γ
dω

carries the finite part. By making a change of variable v = ω2α or equivalently ω = vγ/3, we
find that

A1(t) = 1

8α

∫ 1

0

vγ−1 dv

(v + λ2|t |2α)γ
.

8



J. Phys. A: Math. Theor. 42 (2009) 065208 S C Lim and L P Teo

To find the asymptotic behavior of A1(t) as t → 0, we split it again as the sum of A3(t) and
A4(t), where

A3(t) = 1

8α

∫ 1

0

dv

(v + λ2|t |2α)
∼ 1

4
log

1

|t | − 1

4α
log λ + o(1) (3.9)

gives the divergence part; and A4(t) := A1(t) − A3(t) gives a finite limit:

A4(t) = 1

8α

∫ 1

0

vγ−1 − (v + λ2|t |2α)γ−1

(v + λ2|t |2α)γ
dv = 1

8α

∫ 1
λ2 |t |2α

0

vγ−1 − (1 + v)γ−1

(1 + v)γ
dv

∼ 1

8α

∫ ∞

0

vγ−1 − (1 + v)γ−1

(1 + v)γ
dv + o(1) = 1

8α
(ψ(1) − ψ(γ )) + o(1). (3.10)

In the last equality, we have used #3.219 of [51], with ψ(z) = �′(z)/�(z) being the logarithmic
derivative of the gamma function. The limit of A2(t) when t → 0 is given by

A2(0) =
∫ 1

0
ω−3

(
sin2

(ω

2

)
−

(ω

2

)2
)

dω +
∫ ∞

1
ω−3 sin2

(ω

2

)
dω.

It can be computed explicitly by the regularization method:

A2(0) = lim
ε→0+

{∫ ∞

0
ω−3+ε sin2

(ω

2

)
dω − 1

4

∫ 1

0
ω−1+ε dω

}

= lim
ε→0+

{
1

2
cos

πε

2

�(1 + ε)

ε(1 − ε)(2 − ε)
− 1

4ε

}
= 1

4

(
ψ(1) +

3

2

)
. (3.11)

Combining (3.9), (3.10) and (3.11), we find that the leading behavior of σ 2
α,γ (t) when αγ = 3/2

is

σ 2
α,γ (t) ∼ |t |2

π
log

1

|t | − |t |2
π

{
1

α
log λ +

1

2α
(ψ(γ ) − ψ(1)) − ψ(1) − 3

2

}
+ o(1). (3.12)

This shows that the leading behavior of σ 2
α,γ (t) in the borderline case αγ = 3/2 is of order

|t |2 log(1/|t |).
The behavior of σ 2

α,γ (t) at small t is illustrated graphically in figures 2 and 3. We can
further confirm our results by checking the small time behavior of σ 2

α,γ (t) for the case α = 1,
with the covariance function C1,γ (t) given explicitly by (3.1). By using #8.445, 8.446 and
8.485 of [51] one gets for ν /∈ Z,

Kν(z) = K−ν(z) = π

2 sin(πν)

⎧⎨
⎩

∞∑
j=0

(z/2)2j−ν

j !�(j + 1 − ν)
−

∞∑
j=0

(z/2)2j+ν

j !�(j + 1 + ν)

⎫⎬
⎭ (3.13)

and in the case ν = ±m,m a non-negative integer,

Kν(z) = 1

2

m−1∑
j=0

(−1)j (m − j − 1)!

j !

( z

2

)2j−m

+ (−1)m+1
∞∑

j=0

(z/2)m+2j

j !(m + j)!

{
log

z

2
− 1

2
ψ(j + 1) − 1

2
ψ(j + 1 + m)

}
. (3.14)

From (3.13) and (3.14), one finds that the variance of X1,γ (t) is

C1,γ (0) =
√

π

2λ2γ−1 sin
(
π

(
γ − 1

2

))
�(γ )�

(
3
2 − γ

)
and the leading behavior of σ 2

1,γ (t) as t → 0 is given by

9
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Figure 2. These graphs show the small-time behavior of σ 2
α,γ (t). Left: the function

−cos(παγ )�(2αγ )σ 2
α,γ (t) is plotted as a function of t. The reference curve is y = |t |2αγ−1. Here

αγ = 0.6. The graph shows that − cos(παγ )�(2αγ )σ 2
α,γ (t) ∼ |t |2αγ−1 when t → 0. Right: the

function Kλ
α,γ σ 2

α,γ (t) is plotted as a function of t, where Kλ
α,γ = 2παλ2γ− 3

α
�(γ )

�( 3
2α

)�(γ− 3
2α

)
. The

reference curve is y = t2. The graph shows that Kλ
α,γ σ 2

α,γ (t) ∼ t2 when t → 0.

0 0.05 0.1 0.15 0.2
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t
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α=0.75, γ=2, λ=2

α=0.6, γ=2.5, λ=2

Figure 3. The graph shows the small time behavior of σ 2
α,γ (t) when αγ = 3/2. The reference

curve is t2 log(1/|t |).

• If 1/2 < γ < 3/2,

σ 2
1,γ (t) ∼

√
π |t |2γ−1

22γ−1 sin
(
π

(
γ − 1

2

))
�(γ )�

(
γ − 1

2

)
= − |t |2γ−1

cos(πγ )�(2γ )
. (3.15)

In the last step, we have used the identity �(2z) = (22z−1/
√

π)�(z)�(z + (1/2)).
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• If γ > 3/2,

σ 2
1,γ (t) ∼ 1

4
√

π

�
(
γ − 3

2

)
�(γ )

|t |2. (3.16)

• If γ = 3/2,

σ 2
1,γ (t) ∼ |t |2

π

(
log

1

|t | − log λ + log 2 + ψ(1) +
1

2

)
. (3.17)

By putting α = 1 in the small time asymptotic formulae (3.6), (3.7) and (3.12) of σ 2
1,γ (t),

one obtains formulae (3.15)–(3.17). This corroborates the results (3.6), (3.7) and (3.12).
Next, we study the asymptotic behavior of Cα,γ (t) for t → ∞. When 0 < α < 1, we can

make use of (3.2). Making a change of variable u 
→ u/t and using the formula

1

(1 + z)γ
=

∞∑
j=0

(−1)j�(γ + j)

j !�(γ )
zj ,

we can derive the following t → ∞ asymptotic expression for Cα,γ (t) which is valid when
α ∈ (0, 1):

Cα,γ (t) = 1

π
Im

{
t−1

∫ ∞

0

e−u du(
λ2 + e−iπα u2α

t2α

)γ

}

∼ 1

π
Im

⎧⎨
⎩t−1

∫ ∞

0
e−u

∞∑
j=0

(−1)j�(γ + j)

j !�(γ )
e−iπαj u2αj

t2αj
λ−2γ−2j

⎫⎬
⎭

∼ 1

π�(γ )

∞∑
j=1

(−1)j+1λ−2(γ +j)

j !
�(γ + j)�(1 + 2αj) sin(παj)t−(2αj+1). (3.18)

The leading term is

Cα,γ (t) ∼ γ

π
λ−2(γ +1)�(1 + 2α) sin(πα)t−(2α+1). (3.19)

By letting λ = 1, (3.18) is in agreement with the analogous result given in [49] for Linnik
distribution. Note that when 0 < α < 1, Cα,γ (t) is of polynomial decay with order t−2α−1

when t → ∞ (see figures 4 and 5).
The case α = 1 has to be considered separately. Using the relation (#8.451, no. 6, [51]):

Kν(z) =
√

π

2z
e−z

(
1 +

4ν2 − 1

8z
+ · · ·

)
,

we find from the explicit formula (3.1) for C1,γ (t) that

C1,γ (t) ∼ |t |γ−1

(2λ)γ �(γ )
e−λ|t | as |t | → ∞. (3.20)

One notes that at large time, C1,γ (t) decays exponentially, in contrast to the large time behavior
of Cα,γ (t), α ∈ (0, 1) (3.18), which decays polynomially (see figure 5).

From the above results, it appears that the small time asymptotic behavior of the variance
σ 2

α,γ (t) varies as |t |min{2αγ−1,2}, depending on both α and γ . However, if the index γ is replaced
by γ /α, then σ 2

α,γ (t) ∼ |t |min{2γ−1,2} as t → 0. Thus, together with the large time asymptotic
behavior Cα,γ (t) ∼ |t |−2α−1 as t → ∞, we have the result that the small and large time
asymptotic behaviors of the covariance of Xα,γ (t) are separately characterized by γ and α.
The physical implications of this result will be discussed in the subsequent sections.
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Figure 4. This graph shows the large time behavior of Cα,γ (t).
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Figure 5. The large time behavior of C(t) when α = 0.6 and α = 1 respectively. Left:

here Kλ
α,γ = λ2(γ +1)π

γ�(1+2α) sin(πα)
and the reference curve is y = t−(2α+1). The graph shows that

Kλ
α,γ Cα,γ (t) ∼ t−2α−1 as t → ∞. Right: here Nλ

γ (t) = (2λ)γ �(γ )tγ−1, λ = 1 and the reference

curve is y = e−λt . The graph shows that Nλ
γ (t)C1,γ (t) ∼ e−λt for large t.

3.2. Locally asymptotically self-similarity and fractal dimension

Recall that the stationary random process cannot be self-similar [11]. It would be interesting
to see whether Xα,γ (t) satisfies a weaker self-similar property, namely self-similarity at very
small timescales. First we introduce some definitions. A positive function f is asymptotically
homogeneous of order κ at ∞ if there exists a non-zero function f ∞ such that, for almost
every ω ∈ R and r > 0, f r(ω) = r−κf (rω) has a limit f ∞(ω) when r → ∞. Clearly,
f ∞(ω) is homogeneous of order κ , thus fixes the index κ uniquely. One can easily verify
that the spectral density Sα,γ (ω) is asymptotically homogeneous of order 2αγ at ∞, with
S∞

α,γ (ω) = ω−2αγ /(2π). In addition, the spectral density satisfies the following property:
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Figure 6. The graphs show that ε−αγ + 1
2 [Xα,γ (εt) − Xα,γ (0)] approaches the fractional

Brownian motion B
αγ− 1

2
(t) when ε → 0. Here Zi(t) = ε

−αγ + 1
2

i [Xα,γ (εi t) − Xα,γ (0)] with

ε1 = 0.0001, ε2 = 0.000 05, i = 1, 2.

there exist positive constants A,B ∈ R such that Sα,γ (ω) � B|ω|−2αγ , for almost all |ω| > A.
This is clearly true since λ > 0 implies

Sα,γ (ω) = 1

2π

1

(λ2 + ω2α)γ
<

|ω|−2αγ

2π
.

Using a result (proposition 2 in [52]), one concludes that if αγ ∈ (1/2, 3/2), the fractional
process Xα,γ (t) is locally asymptotically self-similar (LASS) of order αγ − 1/2, that is for
u ∈ R,

lim
ε→0+

{
Xα,γ (t0 + εu) − Xα,γ (t0)

εαγ− 1
2

}
= {

X∞
α,γ (u)

}
,

where the convergence is in the sense of distribution. Note that this result is in agreement with
(3.6) which asserts that the covariance σ 2

α,γ (t) ∼ C|t |2αγ−1 as t → 0. The limit process or
the tangent process X∞

α,γ is self-similar of order αγ − 1
2 . It can be identified with fractional

Brownian motion if αγ = H +1/2, where H denotes the Hurst index of the fractional Brownian
motion. Just like the case of ordinary oscillator process, which locally behaves like Brownian
motion, the fractional oscillator process Xα,γ (t) has the same local behavior as a fractional
Brownian motion of order αγ − 1/2. In fact, (3.6) gives us〈

lim
ε→0+

[
Xα,γ (t0 + εu) − Xα,γ (t0)

εαγ− 1
2

] [
Xα,γ (t0 + εv) − Xα,γ (t0)

εαγ− 1
2

]〉

= lim
ε→0

σ 2
α,γ (εu) + σ 2

α,γ (εv) − σ 2
α,γ (ε(u − v))

2ε2αγ−1

= − 1

2 cos(παγ )�(2αγ )
(|u|2αγ−1 + |v|2αγ−1 − |u − v|2αγ−1),

which is the covariance function 〈BH(u)BH (v)〉 for the fractional Brownian motion

BH(u) := 1√
2π

∫
R

eiωt − 1

|ω|H+ 1
2

dω,

if we identify H with αγ − 1/2 (see figure 6). We also remark that when αβ = 3/2,
we find from (3.12) that the fractional oscillator process Xα,γ (t) fails to satisfy the
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LASS property. When αγ exceeds 3/2, the process Xα,β(t) becomes differentiable with
variance

lim
ε→0

〈[
Xα,γ (t0 + ε) − Xα,γ (t0)

ε

]2
〉

= lim
ε→0

σ 2
α,γ (ε)

ε2
= λ

3
α
−2γ

2πα

�
(

3
2α

)
�

(
γ − 3

2α

)
�(γ )

,

which follows from (3.7).
Another important concept in the study of the sample path properties of a stochastic

process is the Hölderian property. A function f : [a, b] → R is Hölderian of order κ ∈ (0, 1]
if

|f (t) − f (s)| � K|t − s|κ , for all s, t ∈ [a, b]

for some constant K > 0. It is well known that if Z(t) is a stationary process and
σ 2(t) = 〈[Z(t) − Z(0)]2〉 satisfies

σ 2(t) � C|t |2κ ,

then almost surely (a.s.) the sample path of Z(t) is Hölderian of order κ − ε for all ε > 0
[53–55]. Applying this concept to the fractional oscillator process Xα,γ (t), we find from
(3.6), (3.7) and (3.12) that for any ε > 0, the sample path of Xα,γ (t) is Hölderian of order
αγ − 1/2 − ε if αγ < 3/2, and is Hölderian of order 1 − ε if αγ � 3/2.

Now we would like to consider the fractal dimension D of the graph for the fractional
oscillator process Xα,γ (t). Since fractal dimension is a local concept, fractality is defined
for infinitesimally small timescales. For a locally self-similar process, one may apply the
following result to obtain its fractal dimension. A process which is LASS of order κ > 0 and
its sample paths are a.s. κ − ε-Hölderian for all ε > 0, then the fractal dimension of its graph
is a.s. equal to 2 − κ [53, 56]. Applying this result to Xα,γ (t) gives the fractal dimension
D = 5

2 − αγ for the graph of the fractional oscillator process when 1/2 < αγ < 3/2. For
αγ � 3/2, the fractal dimension of the graph of Xα,γ (t) is equal to 1. In other words, the
fractal dimension of the graph of Xα,γ (t) is max

{
1, 5

2 − αγ
}
. Again, if we replace γ by γ /α,

then the fractal dimension becomes max
{
1, 5

2 − γ
}
, which depends solely on γ .

3.3. Short-range dependence property

First we recall that the Ornstein–Uhlenbeck process or the ordinary oscillator process (up to
a multiplicative constant) is the only stationary Gaussian Markov process (see, e.g., [53]),
thus we rule out the possibility of the fractional oscillator processes Xα,γ (t) being Markovian.
Now we would like to find out the nature of memory possessed by Xα,γ (t), whether it has
long memory or long-range dependence (LRD), or short memory or short-range dependence
(SRD). A stationary Gaussian process with covariance C(t) is said to be LRD if for some
finite t∗ � 0, ∫ ∞

t∗
|C(t)| dτ = ∞, (3.21)

otherwise it is SRD. From the results (3.19) and (3.20), we find that the covariance of Xα,γ (t)

behaves asymptotically as Cα,γ (t) ∼ t−(2α+1) if α ∈ (0, 1) and as Cα,γ (t) ∼ e−λt tγ−1 if α = 1,
for t → ∞. This shows that the corresponding integral (3.21) is convergent and therefore the
fractional oscillator process Xα,γ (t) has SRD. We remark that another way to characterize a
short memory process is that the spectral density of the process is continuous at the origin.
For the process Xα,γ (t), Sα,γ (0) is just 1/(2πλ2γ ).

It is interesting to note that when α ∈ (0, 1) the asymptotic order of the covariance does
not depend on the parameter γ . Therefore, the parameter α characterizes the asymptotic order
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of the covariance Cα,γ (t) as t → ∞. Combining with the remark given earlier, one notes that
it is possible to separately characterize the fractal dimension and short-range dependence of
Xα,γ (t) with two different indices.

4. Xα,γ(t) as a velocity process

Diffusion is one of the basic non-equilibrium phenomena. Normal diffusion Y (t) is
characterized by a mean-square displacement that is asymptotically linear in time, i.e.
〈Y (t)2〉 = 2Dt , where D is the diffusion constant [57]. However, experiments show that
there are complex processes whose mean-square displacements behave like 〈Y (t)2〉 ∼ tκ , 0 <

κ < 2. These processes are called anomalous diffusions and they have been observed in
various physical processes (see the references in [3–5, 58]).

In this section, we assume that the fractional oscillator process Xα,γ (t) can be regarded as
a velocity process, and we would like to consider some of the consequences: in particular, the
possibility of the extension of fluctuation–dissipation theorem [1] and the possibility of using
Xα,γ (t) to model anomalous diffusion.

One of the important theorems in statistical mechanics is the fluctuation–dissipation
theorem [1] which relates the coefficient of the covariance of the external random force in the
Langevin equation to the frictional coefficient. It would be interesting to see whether there
exists some kind of fluctuation–dissipation relation for the fractional process Xα,γ (t). For this
purpose we re-express the fractional Langevin equation (2.13) as(

D2α
t + λ2α

) γ

2 Xα,γ (t) = η(t), (4.1)

with the covariance of white noise η(t) given by 〈η(t)η(s)〉 = 2Bδ(t − s), where B is a
constant coefficient. We first consider the position (displacement) process Yα,γ (t) whose
ordinary derivative gives Xα,γ (t), i.e.

Xα,γ (t) = dYα,γ (t)

dt
. (4.2)

More generally, since the evolution of the velocity Xα,γ (t) is described by fractional dynamics
(4.1), we will consider the velocity linked to the displacement by the following relation:

Xα,γ (t) = 0D
χ
t Yα,γ (t), 1

2 < χ < 3
2 , (4.3)

where 0D
χ
t denotes the Riemann–Liouville fractional derivative of order χ . In other words,

the velocity is the fractional derivative of order χ of the position. Here we would like to
remark that the representation of the process Xα,γ (t) by (2.12) has a drawback of lacking
satisfactory causal interpretation. Nevertheless, we partially rectify this problem by using
the Riemann–Liouville fractional derivative in definition (4.3) of the position process. From
another point of view, the discussions below only involve the long-time asymptotic behavior of
the processes Xα,γ (t) and Yα,γ (t), the results are valid for any process having asymptotically
the same behavior as Xα,γ (t). One can regard the process Xα,γ (t) below as a process whose
long-time equilibrium limit is described by (4.1). Alternatively, one can also substitute the
process Xα,γ (t) by the process Xα,γ (t) (2.6) which has another representation [30]

Xα,γ (t) =
∫ t

−∞
Kα,γ (t − u)η(u) du

that admits causal interpretation. Here

Kα,β(t) = Im

π

∫ ∞

0

e−ut

(uα e−iπα + λ)γ
du

is the memory kernel of Xα,γ (t).
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Returning to our discussion about the fluctuation–dissipation relation, the assumption of
the thermalization of the fractional velocity process based on the fractional generalization of
the classical principle of equipartition of energy [1] is

〈[Xα,γ (t)]2〉 = ς(kT )θ , (4.4)

where we have assumed the particle under consideration has unit mass, k is the Boltzmann
constant, T denotes temperature and ς is a constant which carries suitable physical dimensions
to render (4.4) dimensionally consistent.

Under the condition αγ > 1/2, the process Xα,γ (t) has a finite variance given by (3.4):

Cα,γ (0) = B

πα

�
(

1
2α

)
�

(
γ − 1

2α

)
�(γ )

λ1−2αγ . (4.5)

From (4.4) and (4.5) one obtains

B = πα�(γ )

�
(

1
2α

)
�

(
γ − 1

2α

)ςλ2αγ−1(kT )θ = n(α, γ )ςλ2αγ−1(kT )θ , (4.6)

with

n(α, γ ) = πα�(γ )

�
(

1
2α

)
�

(
γ − 1

2α

) .

Equation (4.6) can be regarded as the generalized fluctuation–dissipation relation for the
fractional velocity process. When α = 1, γ = 1 and θ = 1, ς = 1 and (4.6) reduces to the
fluctuation–dissipation relation for the ordinary Ornstein–Uhlenbeck process X1,1(t):

B = λkT . (4.7)

We would like to remark that the noise η(t) we consider here is an external noise. If the
noise is internal, some modifications are required in order to satisfy the fluctuation–dissipation
relation. We plan to extend our work to internal noise in a future work.

Now consider the displacement process Yα,γ (t). We can show that for a short-range
dependent process such as Xα,γ (t), the leading term for the large time behavior of the variance
of its mean-square displacement does not depend on the covariance of Xα,γ (t). For illustration,
let us first consider the simple case with the position process Yα,γ (t) linked to the velocity
process by ordinary derivative (4.2). If we assume that Yα,γ (0) = 0, then the variance of the
position process Yα,γ (t) is given by

〈[Yα,γ (t)]2〉 =
∫ t

0

∫ t

0
Cα,γ (|s1 − s2|) ds2 ds1. (4.8)

By some calculus, we have

〈[Yα,γ (t)]2〉 =
∫ t

0

∫ s1

0
Cα,γ (s1 − s2) ds2 ds1 +

∫ t

0

∫ t

s1

Cα,γ (s2 − s1) ds1 ds2

=
∫ t

0

∫ s

0
Cα,γ (τ ) dτ ds +

∫ t

0

∫ s2

0
Cα,γ (s2 − s1) ds1 ds2

= 2
∫ t

0

∫ s

0
Cα,γ (τ ) dτ ds = 2

∫ t

0
(t − τ)Cα,γ (τ ) dτ. (4.9)

Since Cα,γ (τ ) ∼ τ−2α−1 as τ → ∞, the integral
∫ ∞

0 Cα,γ (τ ) dτ is convergent and we find
that in the long-time (t � 1) limit,

〈[Yα,γ (t)]2〉 ∼ 2

[∫ ∞

0
Cα,γ (τ ) dτ

]
t. (4.10)

16



J. Phys. A: Math. Theor. 42 (2009) 065208 S C Lim and L P Teo

This shows that Yα,γ (t) is an ordinary diffusion with diffusion constant

D =
∫ ∞

0
Cα,γ (τ ) dτ = πSα,γ (0) = Bλ−2αγ . (4.11)

Using (4.6), one gets

D = πα�(γ )ς

�
(

1
2α

)
�

(
γ − 1

2α

) (kT )θ

λ
,

which reduces to the well-known Einstein relation

D = kT

λ

for α = γ = θ = 1. This simplified example shows that the long-time behavior of Cα,γ (τ )

does not show up in the leading term of the long-time asymptotic expression of the variance
〈[Yα,γ (t)]2〉. Its effect only appears in the second leading term (see appendix A). This is due
to the fact that Xα,γ (t) is a short-range process with its covariance C(τ) ∼ τ−2α−1, α > 0
for τ → ∞. We remark that (4.10) is consistent with the result obtained for the case with
α > 0, γ = 1 if the usual velocity–displacement relation (4.2) is used [3].

Now we consider the fractional case with the velocity linked to the displacement by
relation (4.3). If we further assume that 0D

χ−j
t Yα,γ (t)

∣∣
t=0 = 0 for j = 1 if χ � 1 and

j = 1, 2 if χ > 1, then the position process is given by

Yα,γ (t) = 0I
χ
t Xα,γ (t) = 1

�(χ)

∫ t

0
(t − u)χ−1Xα,γ (u) du. (4.12)

One can show that (see appendix A)

〈[Yα,γ (t)]2〉 = 2Bλ−2αγ

[
t2χ−1

(2χ − 1)�(χ)2

]
+ O(tmax{0,2χ−2,2χ−2α−1} log t). (4.13)

The term in the bracket on the right-hand side of (4.13) is just the variance of the
Riemann–Liouville fractional Brownian motion indexed by χ − 1/2 [13]. The behavior
〈[Yα,γ (t)]2〉 ∼ t2χ−1 shows that Yα,γ (t) is a super-diffusion for χ > 1 and a sub-diffusion for
χ < 1. Thus Yα,γ (t) provides a different model for anomalous diffusion [3–5]. Note that
the anomalous order χ is independent of the fractional order α and γ of the field Xα,γ (t).
However, one can show that the regularity of the path Yα,γ (t) is determined by the parameter
αγ + χ .

Since the total fractional derivative order of Xα,γ (t) in (4.1) is αγ , we may consider
setting χ = αγ in (4.3). Then substituting B from (4.6), we get

〈[Yα,γ (t)]2〉 ∼ 2πα�(γ )

�
(

1
2α

)
�

(
γ − 1

2α

)ς
(kT )θ

λ

[
t2αγ−1

(2αγ − 1)�(αγ )2

]

∼ N(α, γ )ς
(kT )θ

λ
t2αγ−1, (4.14)

where N(α, γ ) is a constant term depending on α and γ .
Finally we consider the Fokker–Planck equation of the process Yα,γ (t). Let P(y, t) denote

the probability of finding Yα,γ (t) at the point y at time t. Then since Yα,γ (t) is a Gaussian
process, we have

P(y, t) = 1√
2πσY (t)

exp

(
− y2

2σ 2
Y (t)

)
, (4.15)

where

σ 2
Y (t) = 〈Y (t)2〉.
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Using (4.15), one can easily check that P(y, t) satisfies the effective Fokker–Planck equation

∂

∂t
P (y, t) = D(t)

∂2

∂x2
P(y, t), (4.16)

with the diffusion coefficient D(t) given by [3, 34]

D(t) = 1

2

∂

∂t
〈[Yα,γ (t)]2〉.

When χ = αγ , the equilibrium state (i.e., t → ∞) of the mean-square displacement
〈[Yα,γ (t)]2〉 is given by (4.14). Therefore

D(t) ∼ 1

2
N(α, γ )ς

(kT )θ

λ
(2αγ − 1)t2αγ−2,

which up to the constant N(α, γ ), is the effective diffusion coefficient for fractional Brownian
motion if we let αγ − 1/2 = H , the Hurst index [59–61]. Our result differs from that of
[59–61] which has kT instead of the ς(kT )θ given above. This is due to our use of the
fractional generalization of equipartition principle (4.4).

Here we would also like to remark that since Yα,γ (t) is a non-Markovian process, the
Fokker–Planck equation (4.16) cannot fully define the process [62]. Nevertheless, since
Yα,γ (t) is a Gaussian process, it is explicitly determined by the mean 〈Yα,γ (t)〉 = 0 and the
covariance function

〈Yα,γ (t)Yα,γ (s)〉 = 1

�(χ)2

∫ t

0

∫ s

0
(t − u)χ−1(s − v)χ−1Cα,γ (u − v) dv du,

where Cα,γ (t) is given by (2.11).
From the discussion above, we see that the long-time dependence of the covariance of

Xα,γ (t) does not enter in the leading term of the variance of Yα,γ (t). It only appears as a
second leading term. Instead, the property of the leading term depends only on the differential
relationship between Xα,γ (t) and Yα,γ (t). We would like to emphasize again that, in order to
derive the anomalous order of the displacement process Yα,γ (t) as a diffusion, we only use
the fact that the velocity process is a short-range process and it is the derivative of order χ of
the velocity process Xα,γ (t). The result in this section is valid if we consider any short-range
process as the velocity process.

In the following, we return to the case where 〈η(t)η(t ′)〉 = δ(t − t ′).

5. Casimir energy associated with Xα,γ(t) at finite temperature

The ordinary oscillator process can be regarded as a one-dimensional Euclidean scalar massive
field as its spectral density (ω2 + λ2)−1 is just the Euclidean propagator for a scalar field with
mass λ. By analogy, one can consider the fractional oscillator process Xα,γ (t) as a fractional
Euclidean scalar massive field in one dimension with propagator (|ω|2α + λ2)−γ . From
this viewpoint, it will be interesting to find a convenient way to quantize the corresponding
fractional quantum field φα,γ (t). This can be achieved by using the stochastic quantization of
Parisi and Wu [48]. According to this quantization scheme, an additional auxiliary time τ is
introduced and the Euclidean quantum field φα,γ (t; τ) is assumed to evolve in this auxiliary
time according to a stochastic differential equation of Langevin type with external white
noise. The large equal-τ equilibrium limit of the covariance function of the solution to this
Langevin equation gives the one-dimensional two-point Schwinger function of the Euclidean
field φα,γ (t).
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The nonlocal Euclidean action of the massive scalar field which satisfies the (one-
dimensional) fractional Klein–Gordon equation

[(−
)α + λ2]γ φα,γ (t) = 0

is given by

S[φα,γ ] = 1

2

∫
R

φα,γ (t)[(−
)α + λ2]γ φα,γ (t) dt. (5.1)

The Parisi–Wu quantization procedure requires φα,γ (t; τ) to satisfy the following stochastic
differential equation:

∂φα,γ (t; τ)

∂τ
= − δS[φα,γ ]

δφα,γ

∣∣∣∣
φα,γ =φα,γ (t;τ)

+ η(t; τ), (5.2)

where η(t, τ ) is the external white noise defined by

〈η(t; τ)〉 = 0, 〈η(t; τ)η(t ′; τ ′)〉 = 2δ(t − t ′)δ(τ − τ ′).

Equations (5.1) and (5.2) give
∂φα,γ (t; τ)

∂τ
= −[(−
)α + λ2]γ φα,γ (t) + η(t; τ). (5.3)

The solution of (5.3) subjected to the initial condition φα,γ (t; 0) = 0 is

φα,γ (t; τ) =
∫

R

∫ τ

0
G(t − t ′; τ − τ ′)η(t ′; τ ′) dt ′ dτ ′, (5.4)

where G(t; τ) is the retarded Green function given by

G(t; τ) = θ(τ )

2π

∫
R

exp[−(|ω|2α + λ2)γ τ ] eiωt dω.

The large equal-τ limit (τ = τ ′ → ∞) of the covariance function gives

lim
τ1=τ2→∞〈φα,γ (t1, τ1)φα,γ (t2, τ2)〉 = 2 lim

τ→∞

∫
R

∫ τ

0
G(t1 − t ′; τ − τ ′)G(t2 − t ′; τ − τ ′) dτ ′ dt ′

= 1

π

∫
R

∫ ∞

0
exp[−2(|ω|2α + λ2)γ τ ′] eiω(t1−t2) dτ ′ dω

= 1

2π

∫
R

eiω(t1−t2)

(|ω|2α + λ2)γ
dω, (5.5)

which is just the Euclidean two-point function of the fractional field φα,γ (t).
We next consider the Parisi–Wu quantization method at positive temperature T = β−1.

We follow the Matsubara imaginary time formalism of finite temperature field theory by
requiring φT

α,γ (t; τ) to be periodic in the Euclidean time t with period β. That is,

φT
α,γ (t + β; τ) = φT

α,γ (t; τ). (5.6)

In addition, the white noise ηT (t; τ) is assumed to satisfy the periodic condition in t, i.e.
ηT (t + β; τ) = ηT (t; τ), such that

〈ηT (t; τ)〉 = 0, 〈ηT (t; τ)ηT (t ′; τ ′)〉 = 2

β

∞∑
n=−∞

exp[iωn(t − t ′)]δ(τ − τ ′), (5.7)

with ωn = 2πn/β. The fractional operator [(−
)2α + λ2]γ acting on φT
α,γ (t; τ) is defined via

Fourier series expansion (with respect to t) of φT
α,γ (t; τ), i.e.,

[(−
)2α + λ2]γ φT
α,γ (t; τ) = 1

β

n=∞∑
n=−∞

[∫ β

0
φα,γ (t ′; τ) e−iωnt

′
dt ′

]
(|ωn|2α + λ2)γ eiωnt .
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The retarded Green function for the Langevin equation (5.2) satisfying the periodic conditions
is given by

GT (t; τ) = θ(τ )

β

∞∑
n=−∞

exp[−(|ωn|2α + λ2)γ τ ] eiωnt , (5.8)

so that the solution with initial condition φT
α;γ (t; 0) = 0 is

φT
α,γ (t; τ) =

∫ β

0

∫ τ

0
GT (t − t ′; τ − τ ′)ηT (t ′; τ ′) dτ ′ dt ′, (5.9)

with covariance given by

〈
φT

α,γ (t1, τ1)φ
T
α,γ (t2, τ2)

〉 = 2

β

∞∑
n=−∞

eiωn(t1−t2)

∫ τ1∧τ2

0
exp[−(|ωn|2α + λ2)γ (τ1 − τ ′)]

× exp[−(|ωn|2α + λ2)γ (τ2 − τ ′)] dτ ′. (5.10)

At the large equal-τ limit, the covariance becomes

lim
τ1=τ2→∞

〈
φT

α,γ (t1, τ1)φ
T
α,γ (t2, τ2)

〉 = 1

β

∞∑
n=−∞

eiωn(t1−t2)

(|ωn|2α + λ2)γ
, (5.11)

which is the thermal two-point function for the Euclidean fractional Klein–Gordon field. When
α = γ = 1, this reduces to the ordinary two-point function of one-dimensional Euclidean
scalar field at finite temperature [63]. We would also like to mention that when β → ∞, the
limit of the thermal two-point function (5.11) is the two-point function (5.5).

We remark that we can also consider the solution φ∞
α,γ (t; τ) to (5.2) satisfying the initial

condition φ∞
α,γ (t;−∞) = 0, i.e., instead of having the field evolving from τ = 0, we require

it to evolve from τ = −∞. The solution φ∞
α,γ (t; τ) is then given by

φ∞
α,γ (t; τ) =

∫
R

∫ τ

−∞
G(t − t ′; τ − τ ′)η(t ′; τ ′) dt ′ dτ ′. (5.12)

It can be shown that φ∞
α,γ (t; τ) is a stationary field and in the large-τ limit, the field φα,γ (t; τ)

approaches the field φ∞
α,γ (t; τ), i.e.,

lim
τ→∞ φα,γ (t; τ) = φ∞

α,γ (t; τ).

The equal-τ covariance of φ∞
α,γ (t; τ) is independent of τ and is precisely the propagator (5.5).

The same statement applies to φT,∞
α,γ (t; τ) which is the solution to the periodic version of (5.2)

with boundary condition φT,∞
α,γ (t;−∞) = 0.

We would also like to remark that just as the stochastic process Xα,β(t) is related to the
field φα,β(t) in the sense that the covariance function of Xα,β(t) coincides with the propagator
of φα,β(t), we can define a periodic stochastic process XT

α,β(t) whose covariance function is the
propagator of the periodic field φT

α,γ (t) (5.11). In fact, consider the solution of the fractional
stochastic differential equation

[(−
)α + λ2]
γ

2 XT
α,γ (t) = ηT (t),

where ηT (t) is the periodic white noise with period β and

〈ηT (t)〉 = 0, 〈ηT (t)ηT (t ′)〉 = 1

β

∞∑
n=−∞

eiωn(t−t ′).
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Using Fourier series, it is easy to check that the solution is given by

XT
α,β(t) = 1

β

∞∑
n=−∞

∫ β

0

eiωn(t−t ′)

(|ωn|2α + λ2)
γ

2

ηT (t ′) dt ′,

and the covariance function is

〈
XT

α,γ (t)XT
α,γ (t ′)

〉 = 1

β

∞∑
n=−∞

eiωn(t1−t2)

(|ωn|2α + λ2)γ
,

which coincides with the thermal two-point function (5.11).
The fact that the Schwinger two-point function of the quantum field φα,γ (t) is the same

as the covariance function of the stochastic process Xα,γ (t) allows us to apply the result in
section 3 to conclude that

〈φα,γ (t)φα,γ (t ′)〉 ∼ 1

|t − t ′|1−2αγ

when 2αγ < 1. Namely, the field φα,γ (t) has scaling dimension 1
2 − αγ if αγ < 1/2. This

should be compared to the fact that the stochastic process has Hölder exponent αγ − 1/2
when αγ > 1/2. On the other hand, the relation between the quantum field φα,γ (t) and the
stochastic process Xα,γ (t) does not restrict to the coincidence of the propagator of the former
and the covariance of the later. One can actually show that the physically interesting n-point
correlation function of the quantum field φα,γ (t)—〈φα,γ (t1) · · · φα,γ (tn)〉, is also given by the
multi-covariance function 〈Xα,γ (t1) · · · Xα,γ (tn)〉.

In statistical mechanics, the partition function is an important quantity that encodes the
statistical properties of a system in thermodynamic equilibrium. Just as the partition function
of a simple harmonic oscillator coincides with the partition function of the massive scalar field
in one dimension, we can envisage such a relation to hold for the fractional oscillator Xα,γ (t)

and the quantum field φα,γ (t). Therefore we proceed to calculate the partition function for the
fractional Euclidean field φT

α,γ (t) in one dimension at finite temperature T, and its associated
Casimir free energy. For this purpose, we employ the technique of zeta function regularization
[64–67]. Due to the fractional character of the scalar field under consideration, the derivation
of the Casimir free energy is more complicated as compared to the ordinary scalar field.

By definition, the Casimir free energy F of the fractional Klein–Gordon field φT
α,γ (t)

which is kept at thermal equilibrium with temperature T = β−1 is given by

F = − 1

β
logZ,

where Z is the partition function defined by

Z =
∫

DφT exp

(
−1

2

∫ β

0
φT (t)[(−
)α + m2]γ φT (t) dt

)
.

By using zeta regularization techniques, we find that

F = − 1

2β
(ζ ′(0) − ζ(0) log μ2), (5.13)

where μ is a normalization constant and ζ(s) is the zeta function

ζ(s) = m−2γ s + 2
∞∑

n=1

{[an]2α + m2}−γ s, (5.14)
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with a = 2π
β

. The series in (5.14) is divergent when s � 1/(2αγ ). Therefore we need to
find an analytic continuation of ζ(s) to a neighborhood of s = 0. The computation is quite
involved and we leave it to appendix B. The result is

F = 1

2β

{
ωα,�(−1)

1
2α

β

π
m

1
α

[
log μ2 − γ

(
ψ

(
1

2α
+ 1

)
− ψ(1) − log m2

)]

+ γ (1 − ωα,�)
β

sin π
2α

m
1
α − γ

∫ ∞

0
t−1K(t) e−tm2

dt

}
.

Here

K(t) = 2
∞∑

n=1

e−t[an]2α − 1

α
�

(
1

2α

)
t−

1
2α a−1 + 1,

and

ωα,� =
{

1, if α ∈ � = {
1

2u
: u ∈ N

}
0, if α /∈ �.

When β → ∞, we have the asymptotic behavior (see appendix B):

F ∼ ωα,�

(−1)
1

2α

2π
m

1
α

[
log μ2 − γ

(
ψ

(
1

2α
+ 1

)
− ψ(1) − log m2

)]

+ γ (1 − ωα,�)
m

1
α

2 sin π
2α

− γ

∞∑
k=1

(−1)k

k
m−2k(2π)2αkζR(−2αk)β−2αk−1. (5.15)

In the special case α = 1, since ζ(−2k) = 0 for all k ∈ N, (5.15) gives us

F ∼ γm

2
. (5.16)

In fact, when α = 1, we have the explicit formula (see appendix B):

F = γm

2
+

γ

β
log(1 − e−βm) = γ

β
log

[
2 sinh

βm

2

]
. (5.17)

It is easy to see that the leading term when β � 1 agrees with (5.16) and the remainder terms
decay exponentially.

From (5.15), we note that at low temperature T � 1 (β � 1), the leading order term of
the free energy F is of order T 0. When α is not the reciprocal of an even number, then the
leading order is

F ∼ γm
1
α

2 sin π
2α

+ O(T 1+2α), (5.18)

whose sign depends on α. There is a dependence of F on the normalization constant μ when
α is the reciprocal of an even number. We shall renormalize the free energy F to get rid of
this dependence later.

Formula (5.15) is not suitable for studying the high temperature behavior of the Casimir
free energy F . In appendix B, we derive the following alternative expression for the free
energy F :

F = 1

2β

{
γ log m2 + 2αγ log β − 2γ

∑
l∈N

l �= 1
2α

(−1)l

l
m2l

(
β

2π

)2αl

ζR(2αl) + ωα,�(−1)
1

2α
β

π
m

1
α

×
[

log μ2 + αγ

(
log

(
2π

β

)2

+ 2ψ(1)

)
− γ

[
ψ

(
1

2α

)
− ψ(1)

]]}
, (5.19)
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which is valid when β < 2π
m

. In particular, in the high temperature limit T � 1 (β � 1),

F ∼ −αγT log T +
γ T

2
log m2 + O(1), (5.20)

the Casimir free energy is negative and the leading term −αγT log T depends linearly on α

and γ . When α = 1, using

ζR(2l) = (−1)l+1 (2π)2l

2(2l)!
B2l ,

where B2l , l � 1 are the Bernoulli numbers defined by

1

ex − 1
= 1

x
− 1

2
+

∞∑
n=1

B2n

(2n)!
x2n−1,

and

log
1 − e−x

x
=

∫ x

0

{
1

eu − 1
− 1

u

}
du = −x

2
+

1

2

∞∑
n=1

B2n

(2n)!

x2n

n
,

we find that (5.19) gives

F = 1

2β

{
γ log m2 + 2γ log β + γ

∞∑
l=1

B2l

(2l)!

(βm)2l

l

}

= γ

2β

{
2 log[βm] + 2 log

[
1 − e−βm

βm

]
+ βm

}
= γ

β
log

[
2 sinh

βm

2

]
,

agreeing with (5.17).
One notes that when α is the reciprocal of an even number, the free energy depends on

the normalization constant μ. In order to remove this dependence, we need to renormalize the
free energy by adding a counterterm Fc to the free energy so that the renormalized free energy
Fren is

Fren = F + Fc.

A reasonable way to determine the counterterm Fc is to require that in the limit β → ∞ and
m → 0,Fren → 0. equation (5.15) gives us immediately

Fc = −ωα,�

(−1)
1

2α

2π
m

1
α (log μ2 + γ log m2).

Note that adding the counterterm Fc to the free energy is equivalent to setting μ = m−γ

when α is the reciprocal of an even integer. Therefore, from (5.15) and (5.19), we obtain
immediately that in the low temperature T = 1/β � 1 limit,

Fren ∼ −γωα,�

(−1)
1

2α

2π
m

1
α

(
ψ

(
1

2α
+ 1

)
− ψ(1)

)
+ γ (1 − ωα,�)

m
1
α

2 sin π
2α

− γ

∞∑
k=1

(−1)k

k
m−2k(2π)2αkζR(−2αk)β−2αk−1, (5.21)

whereas in the high temperature T = 1/β � 1 limit,

Fren = 1

2β

{
γ log m2 + 2αγ log β − 2γ

∑
l∈N

l �= 1
2α

(−1)l

l
m2l

(
β

2π

)2αl

ζR(2αl) + γωα,�(−1)
1

2α
β

π
m

1
α

×
[
α

(
log

(
2π

βm
1
α

)2

+ 2ψ(1)

)
− ψ

(
1

2α

)
+ ψ(1)

]}
. (5.22)
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Figure 7. The renormalized free energy Fren/m
1
α as a function of βm1/α when α =

0.1, 0.3, 0.5, 0.7, 0.9 and γ = 1.

Note that (5.21) implies that if α is the reciprocal of an even integer, then when T → 0, the
leading order term of Fren is

Fren ∼ −γ
(−1)

1
2α

2π
m

1
α

(
ψ

(
1

2α
+ 1

)
− ψ(1)

)
+ O(T 2α+1), (5.23)

whose sign depends on α.
From (5.18) and (5.23), we see that in the low temperature limit, the leading order term

of the renormalized Casimir free energy still depends linearly on γ , but its dependence on α

is highly nontrivial.
Finally, we observe from (5.21) and (5.22) that the combination Fren/m

1
α depends on β

and m in the combination βm
1
α . The graphs and contour plots of Fren/m

1
α as a function of α

and βm
1
α are shown in figures 7–9. The high temperature and low temperature behaviors of

Fren are shown in figure 10.

6. Concluding remarks

We have introduced a new Gaussian process called the fractional oscillator process with
two indices, which is obtained as the solution to a stochastic differential equation with two
fractional orders based on Riesz fractional derivative. Some basic properties of this process
can be obtained based on the asymptotic properties of its covariance despite its complex
nature. The main advantage of the fractional oscillator process parametrized by two indices
over the fractional process with single index is that the former has its fractal dimension (or local
self-similarity property) and the short-range dependence separately characterized by the two
indices, while the latter has both these properties determined by a single index. Such a process
may provide a more flexible model for applications in phenomena with short memory. Another
advantage of the fractional oscillator process we introduce in this paper is the simple form
of its spectral density, which makes it an ideal candidate for modeling physical processes.
A careful discussion of the modeling issue would require the treatment of a whole paper.
Therefore we defer it to a future publication.
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Here γ = 1.
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We have also considered the possibility of regarding the fractional oscillator process as
the velocity process of an anomalous diffusion. The formal extension of the fluctuation–
dissipation relation and Einstein relation is discussed. By analogy regarding the fractional
oscillator process as the Euclidean fractional scalar Klein–Gordon field in one dimension,
we carry out the stochastic quantization of such a field with a nonlocal action. The Casimir
energy associated with the fractional Klein–Gordon field at finite positive temperature was
calculated by using the thermal zeta function regularization technique. The expression for the
free energy has a rather complicated form. We thus consider the low and high temperature
limits for the free energy. Graphical representations of this asymptotic behavior of the free
energy are given.
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Extension of our results can be carried out to give the n-dimensional Euclidean fractional
Klein–Gordon field. However, the derivation of the asymptotic properties for the covariance
function and the Casimir energy will be more complicated. The sign dependence of the
free energy has important physical implication when the fractional quantum field under
consideration is confined between parallel plates or cavities as the sign of the Casimir energy
will determine whether the associated Casimir force is attractive or repulsive.

Recently, processes with variable local regularity and memory have attracted considerable
attention. Multifractional processes such as multifractional Brownian motion [68, 69] have
been defined which can be used to model multifractal processes. As a result, it would be natural
to consider the fractional oscillator process of variable order, with α and γ being extended to
time-dependent α(t) and γ (t). We expect that the variable short-range dependence property
remains valid, and the result for fractal dimension holds only locally. However, the Casimir
energy calculation will require new mathematical techniques and approximations. Such a
generalization may find applications for complex systems where the physical phenomena can
have variable short memory and the fractal dimension varies with time or position.
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Appendix A. The long-time asymptotic behavior of the mean-square displacement

〈Yα, γ(t)2〉

A.1. Ordinary derivative

We show that if the position process Yα,γ (t) is related to the velocity process Xα,γ (t) by

Xα,γ (t) = dYα,γ (t)

dt
,
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then the long-time behavior of the covariance function Cα,γ (τ ) of Xα,γ (t) does not show up in
the leading term in the long-time asymptotic expression of the variance 〈[Yα,γ (t)]2〉. Its effect
only appears in the second leading term. In fact, from (4.9), we have

〈[Yα,γ (t)]2〉 = 2
∫ t

0
(t − τ)Cα,γ (τ ) dτ = 2

[∫ t

0
Cα,γ (τ ) dτ

]
t − 2

∫ t

0
τCα,γ (τ ) dτ.

Equation (3.18) gives us the long-time behavior of Cα,γ (τ ) as Cα,γ (τ ) ∼ A1τ
−2α−1 +

O(τ−4α−1) for some constant A1, which implies that the integrals
∫ ∞

0 Cα,γ (τ ) dτ are
convergent; and∫ t

0
Cα,γ (τ ) dτ =

∫ ∞

0
Cα,γ (τ ) dτ −

∫ ∞

t

Cα,γ (τ ) dτ ∼ A2 + A3t
−2α + O(t−4α) (A.1)

as t → ∞. On the other hand, the integral
∫ ∞

0 τCα,γ (τ ) dτ is convergent if and only if
α > 1/2. In this case∫ t

0
τCα,γ (τ ) dτ =

∫ ∞

0
τCα,γ (τ ) dτ −

∫ ∞

t

τCα,γ (τ ) dτ ∼ A4 + O(t−2α+1) (A.2)

as t → ∞. If α < 1/2, then∫ t

0
τC(τ) dτ ∼ A5t

1−2α + O(tmax{0,1−4α}) (A.3)

as t → ∞. In the borderline case α = 1/2,∫ t

0
τC(τ) dτ ∼ A6 log t + O(1). (A.4)

Therefore, as t → ∞, if α > 1/2, then

〈[Yα,γ (t)]2〉 ∼ [2A2]t − [2A4] + O(t1−2α).

If α = 1/2, then

〈[Yα,γ (t)]2〉 ∼ [2A2]t − [2A6] log t + O(1).

Finally, if α < 1/2, then

〈[Yα,γ (t)]2〉 ∼ [2A2]t + [2A3 − 2A5]t1−2α + O(tmax{0,1−4α}).

These show that the leading term of 〈[Yα,γ (t)]2〉 is of order t, independent of α; and the second
leading term is of order tmax{0,1−2α} log t , which depends on α.

A.2. Fractional derivative

We show that if the position process Yα,γ (t) is related to the velocity process Xα,γ (t) by

Xα,γ (t) = 0D
χ
t Yα,γ (t), 1

2 < χ < 3
2 ,

and 0D
χ−j
t Yα,γ (t)

∣∣
t=0 = 0 for j = 1 if χ � 1 and j = 1, 2 if χ > 1, then

〈[Yα,γ (t)]2〉 = 2Bλ−2αγ

[
t2χ−1

(2χ − 1)�(χ)2

]
+ O(tmax{0,2χ−2,2χ−2α−1} log t). (A.5)

From (4.12), we have

〈[Yα,γ (t)]2〉 = 1

�(χ)2

∫ t

0

∫ t

0
(t − s1)

χ−1(t − s2)
χ−1〈Xα,γ (s1)Xα,γ (s2)〉 ds1 ds2

= 1

�(χ)2

∫ t

0

∫ t

0
(t − s1)

χ−1(t − s2)
χ−1Cα,γ (|s1 − s2|) ds1 ds2.
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Using some calculus, this gives

〈[Yα,γ (t)]2〉 = 2

�(χ)2

∫ t

0

∫ s2

0
(t − s1)

χ−1(t − s2)
χ−1Cα,γ (s2 − s1) ds1 ds2

= 2

�(χ)2

∫ t

0

∫ s

0
(t + τ − s)χ−1(t − s)χ−1Cα,γ (τ ) dτ ds

= 2

�(χ)2

∫ t

0

[∫ t

τ

(t + τ − s)χ−1(t − s)χ−1ds

]
Cα,γ (τ ) dτ

= 2

�(χ)2

∫ t

0

[∫ t

τ

uχ−1(u − τ)χ−1 du

]
Cα,γ (τ ) dτ.

The case χ = 1 has been considered above. Now we consider the cases χ ∈ (1/2, 1) and
χ ∈ (1, 3/2) separately. If χ ∈ (1/2, 1), writing

(u − τ)χ−1 = uχ−1 − (uχ−1 − (u − τ)χ−1),

we have∫ t

τ

uχ−1(u − τ)χ−1 du = 1

2χ − 1
(t2χ−1 − τ 2χ−1) −

∫ t

τ

uχ−1(uχ−1 − (u − τ)χ−1) du.

Therefore, if χ ∈ (1/2, 1),

〈[Yα,γ (t)]2〉 = 2

�(χ)2

(
t2χ−1

2χ − 1

∫ t

0
Cα,γ (τ ) dτ − 1

2χ − 1

∫ t

0
τ 2χ−1Cα,γ (τ ) dτ

−
∫ t

0

[ ∫ t

τ

uχ−1(uχ−1 − (u − τ)χ−1) du

]
Cα,γ (τ ) dτ

)
.

On the other hand, if χ ∈ (1, 3/2), writing

(u − τ)χ−1 = uχ−1 − (χ − 1)uχ−2τ − [uχ−1 − (χ − 1)uχ−2τ − (u − τ)χ−1],

we have∫ t

τ

uχ−1(u − τ)χ−1 du = t2χ−1

2χ − 1
− τ

2
t2χ−2 − 3 − 2χ

2(2χ − 1)
τ 2χ−1

−
∫ t

τ

uχ−1 [
uχ−1 − (χ − 1)uχ−2τ − (u − τ)χ−1]

du.

Therefore, if χ ∈ (1, 3/2)

〈[Yα,γ (t)]2〉 = 2

�(χ)2

(
t2χ−1

2χ − 1

∫ t

0
Cα,γ (τ ) dτ − t2χ−2

2

∫ t

0
τCα,γ (τ ) dτ

− 3 − 2χ

2(2χ − 1)

∫ t

0
τ 2χ−1Cα,γ (τ ) dτ

−
∫ t

0

{ ∫ t

τ

uχ−1[uχ−1 − (χ − 1)uχ−2τ − (u − τ)χ−1] du

}
Cα,γ (τ ) dτ

)
.

The large-t behaviors of
∫ t

0 Cα,γ (τ ) dτ and
∫ t

0 τCα,γ (τ ) dτ have been studied and given by
(A.1)–(A.4). For the term

∫ t

0 τ 2χ−1Cα,γ (τ ) dτ , since Cα,γ (τ )(τ ) ∼ A1τ
−2α−1 + O(τ−4α−1) as

τ → ∞, we find that if 2χ − 1 < 2α,∫ t

0
τ 2χ−1Cα,γ (τ ) dτ =

∫ ∞

0
τ 2χ−1Cα,γ (τ ) dτ −

∫ ∞

t

τ 2χ−1Cα,γ (τ ) dτ

= Bχ + O(t−2α+2χ−1).
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However, if 2χ − 1 > 2α,∫ t

0
τ 2χ−1Cα,γ (τ ) dτ = Bχt2χ−2α−1 + O(tmax{0,2χ−1−4α}),

and if 2χ − 1 = 2α, then∫ t

0
τ 2χ−1Cα,γ (τ ) dτ = Bχ log t + O(1).

Now for the term∫ t

0

[∫ t

τ

uχ−1(uχ−1 − (u − τ)χ−1) du

]
Cα,γ (τ ) dτ,

By making a change of variable u 
→ uτ , we have∫ t

0

[∫ t

τ

uχ−1(uχ−1 − (u − τ)χ−1) du

]
Cα,γ (τ ) dτ

=
∫ t

0
τ 2χ−1

[∫ t
τ

1
uχ−1(uχ−1 − (u − 1)χ−1) du

]
Cα,γ (τ ) dτ

=
∫ ∞

1
uχ−1(uχ−1 − (u − 1)χ−1)

∫ t
u

0
τ 2χ−1Cα,γ (τ ) dτ du.

Using the fact that Cα,γ (τ ) > 0, we find that this term is bounded above by∫ ∞

1
uχ−1(uχ−1 − (u − 1)χ−1) du

∫ t

0
τ 2χ−1Cα,γ (τ )(τ ) dτ.

Note that χ ∈ (1/2, 1) implies that the first integral is convergent. Similarly, we have for
χ ∈ (1, 3/2),∫ t

0

{∫ t

τ

uχ−1[uχ−1 − (χ − 1)uχ−2τ − (u − τ)χ−1] du

}
Cα,γ (τ ) dτ

�
∫ ∞

1
uχ−1[uχ−1 − (χ − 1)uχ−2 − (u − 1)χ−1] du

∫ t

0
τ 2χ−1Cα,γ (τ ) dτ,

and χ ∈ (1, 3/2) guarantees the convergence of the first integral. Gathering the results, we
find that when t → ∞,

〈[Yα,γ (t)]2〉 ∼ At2χ−1 + O(max{t2χ−2α−1, t2χ−2, t2χ−2 log t, t0, t0 log t}),
where

A = 2

(2χ − 1)�(χ)2

∫ ∞

0
Cα,γ (τ ) dτ = 2Bλ−2αγ

(2χ − 1)�(χ)2
,

and (A.5) follows.

Appendix B. The finite temperature free energy of the fractional Klein–Gordon field

φT
α, γ(t)

We want to compute the free energy (5.13). We use standard techniques and write

2
∞∑

n=1

{[an]2α + m2}−γ s = 2

�(γ s)

∫ ∞

0
tγ s−1

∞∑
n=1

e−t ([an]2α+m2) dt. (B.1)
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Since the obstacle to this integral to define an analytic function in s comes from the singularity
at t = 0 of the integrand, the asymptotic behavior of

2
∞∑

n=1

e−t[an]2α

as t → 0 becomes crucial here. Using the representation

e−z = 1

2π i

∫ c+i∞

c−i∞
�(w)z−w dw, c ∈ R

+, (B.2)

we have

2
∞∑

n=1

e−t[an]2α = 2

2π i

∫ c+i∞

c−i∞
dw�(w)t−wa−2αwζR(2αw),

when c > 1/(2α). Here ζR(s) is the Riemann zeta function. This gives the asymptotic
behavior

2
∞∑

n=1

e−t[an]2α ∼ 1

α
�

(
1

2α

)
t−

1
2α a−1 + 2

∞∑
k=0

(−1)k

k!
t ka2αkζR(−2αk) (B.3)

as t → 0 (also as a → 0). Using the fact that ζR(0) = −1/2, then with

K(t) = 2
∞∑

n=1

e−t[an]2α − 1

α
�

(
1

2α

)
t−

1
2α a−1 + 1,

equation (B.3) implies that K(t) = O(t) as t → 0. Now, we can continue the evaluation of
the integral in (B.1):

2

�(γ s)

∫ ∞

0
tγ s−1

∞∑
n=1

e−t ([an]2α+m2) dt = 1

�(γ s)

∫ ∞

0
tγ s−1

[
1

α
�

(
1

2α

)
t−

1
2α a−1 − 1

]
e−tm2

dt

+
1

�(γ s)

∫ ∞

0
tγ s−1K(t) e−tm2

dt

= 1

α

�
(

1
2α

)
�

(
γ s − 1

2α

)
�(γ s)

a−1m−2γ s+ 1
α − m−2γ s +

1

�(γ s)

∫ ∞

0
tγ s−1K(t) e−tm2

dt.

Since K(t) = O(t) as t → 0, the second integral in the last line of the above equation defines
an analytic function for s > −1/γ . Combining with the first term in (5.14), we find that an
analytic continuation of ζ(s) to Re s > −1/γ is given by

ζ(s) = �
(

1
2α

)
�

(
γ s − 1

2α

)
α�(γ s)

a−1m−2γ s+ 1
α +

1

�(γ s)

∫ ∞

0
tγ s−1K(t) e−tm2

dt. (B.4)

To evaluate ζ(0) and ζ ′(0), we observe that∫ ∞

0
tγ s−1K(t) e−tm2

dt

is analytic for s > −1/γ . Therefore the only possible contribution to ζ(0) comes from the
first term in (B.4) when 1/(2α) ∈ N. Denote by � the set

� =
{

1

2u
: u ∈ N

}
,

and let

ωα,� =
{

1, if α ∈ �

0, if α /∈ �.
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Then we find that

ζ(0) = 2ωα,�(−1)
1

2α a−1m
1
α ,

and

ζ ′(0) = 2ωα,�(−1)
1

2α a−1m
1
α γ

{
ψ

(
1

2α
+ 1

)
− ψ(1) − log m2

}

− γ (1 − ωα,�)
2π

sin π
2α

a−1m
1
α + γ

∫ ∞

0
t−1K(t) e−tm2

dt.

Here ψ(z) = �′(z)/�(z) is the logarithmic derivative of the gamma function. Substituting
the above into (5.13) gives the Casimir free energy

F = 1

2β

{
ωα,�(−1)

1
2α

β

π
m

1
α

[
log μ2 − γ

(
ψ

(
1

2α
+ 1

)
− ψ(1) − log m2

)]

+ γ (1 − ωα,�)
β

sin π
2α

m
1
α − γ

∫ ∞

0
t−1K(t) e−tm2

dt

}
.

To study the low temperature asymptotic behavior of F , we first use (B.3) to obtain asymptotic
behavior of ζ(s) when a → 0:

ζ(s) ∼ �
(

1
2α

)
�

(
γ s − 1

2α

)
α�(γ s)

a−1m−2γ s+ 1
α + 2

∞∑
k=1

(−1)k

k!

�(γ s + k)

�(γ s)
m−2γ s−2ka2αkζR(−2αk).

From this we can find the asymptotic behavior of ζ(0) and ζ ′(0), which, when substituted into
(5.13) gives

F ∼ ωα,�

(−1)
1

2α

2π
m

1
α

[
log μ2 − γ

(
ψ

(
1

2α
+ 1

)
− ψ(1) − log m2

)]

+ γ (1 − ωα,�)
m

1
α

2 sin π
2α

− γ

∞∑
k=1

(−1)k

k
m−2k(2π)2αkζR(−2αk)β−2αk−1 (B.5)

when β → ∞. When α = 1, we can find an exact formula as follows. By applying the Jacobi
inversion formula

1 + 2
∞∑

n=1

e−t[an]2 = 1

a

√
π

t

∞∑
n=−∞

e− π2

ta2 n2

,

we have

ζ(s) =
√

π

a�(γ s)

∫ ∞

0
tγ s− 1

2 −1
∞∑

n=−∞
e− π2

ta2 n2−tm2

dt

=
√

π�
(
γ s − 1

2

)
a�(γ s)

m1−2γ s +
4
√

π

a�(γ s)

∞∑
n=1

( πn

am

)γ s− 1
2
Kγs− 1

2

(
2πnm

a

)
.

Here Kν(z) is the modified Bessel function of second kind. Together with K1/2(z) =√
π/(2z) e−z, one obtains

F = γm

2
− γ

β

∞∑
n=1

1

n
e−βnm = γm

2
+

γ

β
log(1 − e−βm) = γ

β
log

[
2 sinh

βm

2

]
. (B.6)

To study the high temperature behavior of F , we can use the expansion

exp(−tm2) =
∞∑
l=0

(−1)l

l!
t lm2l (B.7)
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and find that

2
∞∑

n=1

{[an]2α + m2}−γ s = 2

�(γ s)

∞∑
l=0

(−1)l

l!
m2l

∫ ∞

0
tγ s+l−1

∞∑
n=1

e−t[an]2α

dt

= 2

�(γ s)

∞∑
l=0

(−1)l

l!
m2la−2α(γ s+l)�(γ s + l)ζR(2α(γ s + l)). (B.8)

The l = 0 term in (B.8) will contribute −1 to ζ(0), which is canceled by the contribution
from the term m−2γ s (5.14). Moreover, since ζR(s) is meromorphic on C with a simple pole
at s = 1 with

ζR(s) = 1

s − 1
− ψ(1) + O (s − 1) , as s → 1,

we see that if α = 1/(2j) for some j ∈ N, then there is another nonzero contribution to ζ(0)

arising from the l = j term in (B.8). Therefore,

ζ(0) = 2ωα,�(−1)
1

2α a−1m
1
α

and

ζ ′(0) = −2γ log m − 2αγ log
2π

a
+ 2γ

∑
l∈N

l �= 1
2α

(−1)l

l
m2la−2αlζR(2αl)

− 2ωα,�(−1)
1

2α a−1m
1
α γ

(
α[log a2 + 2ψ(1)] − ψ

(
1

2α

)
+ ψ(1)

)
.

This gives us

F = 1

2β

{
γ log m2 + 2αγ log β − 2γ

∑
l∈N

l �= 1
2α

(−1)l

l
m2l

(
β

2π

)2αl

ζR(2αl) + ωα,�(−1)
1

2α
β

π
m

1
α

×
[

log μ2 + αγ

(
log

(
2π

β

)2

+ 2ψ(1)

)
− γ

[
ψ

(
1

2α

)
− ψ(1)

]]}
. (B.9)
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92 2412–21
[30] Lim S C, Li M and Teo L P 2008 Langevin equation with two fractional orders Phys. Lett. A 372 6309–20
[31] Samko S, Kilbas A A and Maritchev D I 1993 Integrals and Derivatives of the Fractional Order and Some of

Their Applications (Amsterdam: Gordon and Breach)
[32] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations

(Amsterdam: Elsevier)
[33] West B and Picozzi S 2002 Fractional Langevin model of memory in financial time series Phys. Rev. E 66 037106
[34] Picozzi S and West B 2002 Fractional Langevin model of memory in financial markets Phys. Rev. E 66 046118
[35] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic)
[36] Drozdov A D 2007 Fractional oscillator driven by a Gaussian noise Physica A 376 237–45
[37] Narahari Achar B N, Hanneken J W, Enck T and Clarke T 2001 Dynamics of the fractional oscillator Physica

A 297 361–7
[38] Narahari Achar B N, Hanneken J W and Clarke T 2002 Response characteristics of a fractional oscillator

Physica A 309 275–88
[39] Ryabov Ya E and Puzenko A 2002 Damped oscillations in view of the fractional oscillator equation Phys. Rev.

B 66 184201
[40] Narahari Achar B N, Hanneken J W and Clarke T 2004 Damping characteristics of a fractional oscillator Physica

A 339 311–9
[41] Stanislavsky A A 2004 Fractional oscillator Phys. Rev. E 70 051103
[42] Stanislavsky A A 2005 Twists of fractional oscillations Physica A 354 101–10
[43] Gay R and Heyde C C 1990 On a class of random field models which allows long range dependence

Biometrika 77 401–3
[44] Leonenko N 1999 Limit Theorems for Random Fields with Singular Spectrum (Dordrecht: Kluwer)
[45] Samko S G 2002 Hypersingular Integrals and Their Applications (London: Taylor and Francis)
[46] Barci D G, Oxman L E and Rocca M 1996 Canonical quantization of non-local field equations Int. J. Mod.

Phys. A 11 2111–26
[47] Lim S C and Muniandy S V 2004 Stochastic quantization of nonlocal fields Phys. Lett. A 324 396–405
[48] Parisi G and Wu Y S 1981 Perturbation theory without gauge fixing Sci. Sinica 24 483–96
[49] Erdogan M B and Ostrovskii I V 1998 Analytic and asymptotic properties of generalized Linnik probability

densities J. Math. Anal. Appl. 217 555–78
[50] Kotz S, Ostrovskii I V and Hayfavi A 1995 Analytic and asymptotic properties of Linnik’s probability density

I, II J. Math. Anal. Appl. 193 353–371, 497

33

http://dx.doi.org/10.1016/0167-2789(95)00051-5
http://dx.doi.org/10.1103/PhysRevE.66.021114
http://dx.doi.org/10.1016/j.physleta.2006.02.014
http://dx.doi.org/10.1142/S0219477507003817
http://dx.doi.org/10.1016/S0378-3758(98)00244-4
http://dx.doi.org/10.1137/S0036144501394387
http://dx.doi.org/10.1088/0305-4470/39/12/005
http://dx.doi.org/10.1089/cmb.2005.12.545
http://dx.doi.org/10.1023/A:1004671119400
http://dx.doi.org/10.1016/j.resp.2007.11.007
http://dx.doi.org/10.1023/B:BOUN.0000020158.10053.ab
http://dx.doi.org/10.1007/s10546-005-9037-1
http://dx.doi.org/10.1529/biophysj.106.091363
http://dx.doi.org/10.1103/PhysRevE.65.037106
http://dx.doi.org/10.1103/PhysRevE.66.046118
http://dx.doi.org/10.1016/j.physa.2006.10.060
http://dx.doi.org/10.1016/S0378-4371(01)00200-X
http://dx.doi.org/10.1016/S0378-4371(02)00609-X
http://dx.doi.org/10.1103/PhysRevB.66.184201
http://dx.doi.org/10.1016/j.physa.2004.03.030
http://dx.doi.org/10.1103/PhysRevE.70.051103
http://dx.doi.org/10.1016/j.physa.2005.02.033
http://dx.doi.org/10.1093/biomet/77.2.401
http://dx.doi.org/10.1142/S0217751X96001061
http://dx.doi.org/10.1016/j.physleta.2004.02.073
http://dx.doi.org/10.1006/jmaa.1997.5734
http://dx.doi.org/10.1006/jmaa.1995.1240


J. Phys. A: Math. Theor. 42 (2009) 065208 S C Lim and L P Teo

[51] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products (San Diego: Academic)
[52] Bonami A and Estrade A 2003 Anisotropic analysis of some Gaussian models J. Fourier Anal. Appl. 9 215–36
[53] Adler A J 1981 The Geometry of Random Fields (New York: Wiley)
[54] Ayache A and Leger S Fractional and multifractional Brownian sheet unpublished
[55] Ayache A and Vehel J L 2000 The generalized multifractional Brownian motion Stat. Inference Stoch. Process.

3 7–18
[56] Benassi A, Cohen S and Istas J 2003 Local self-similarity and Hausdorff dimension C. R. Math. Acad. Sci. Paris

336 267–72
[57] Risken H 1989 The Fokker–Planck Equation (Berlin: Springer)
[58] Lutz E 2001 Fractional Langevin equation Phys. Rev. E 64 051105
[59] Wang K G and Lung C W 1991 Long-time correlation effects and fractal Brownian motion Phys. Lett.

A 151 119–21
[60] Wang K G 1992 Long-time correlation effects and biased anomalous diffusion Phys. Rev. A 45 833–9
[61] Bolivar A O 2004 Quantum-Classical Correspondence, Dynamical Quantization and the Classical Limit

(Springer Series: The Frontiers Collection) (Berlin: Springer) p 61
[62] Hänggi P and Thomas H 1982 Stochastic processes: time evolution, symmetries and linear response Phys.

Rep. 88 207–314
[63] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena 4th edn (Oxford: Clarendon)
[64] Hawking S W 1977 Zeta function regularization of path integrals in curved space time Commun. Math.

Phys. 55 139–70
[65] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with

Applications (River Edge, NJ: World Scientific)
[66] Elizalde E 1995 Ten Physical Applications of Spectral Zeta Functions (Berlin: Springer)
[67] Kirsten K 2002 Spectral Functions in Mathematics and Physics (Boca Raton, FL: Chapman and Hall)
[68] Peltier R F and Vehel J L 1995 Multifractional Brownian motion: definition and preliminary results INRIA

Report 2645
[69] Benassi A, Jaffard S and Roux D 1997 Elliptic Gaussian random processes Rev. Mat. Iberoamericana 13 19–90

34

http://dx.doi.org/10.1007/s00041-003-0012-2
http://dx.doi.org/10.1023/A:1009901714819
http://dx.doi.org/10.1103/PhysRevE.64.051106
http://dx.doi.org/10.1016/0375-9601(90)90175-N
http://dx.doi.org/10.1103/PhysRevA.45.833
http://dx.doi.org/10.1016/0370-1573(82)90045-X
http://dx.doi.org/10.1007/BF01626516

	1. Introduction
	2. Fractional oscillator process with two indices
	3. Asymptotic behaviors of the covariance function and sample path properties of
	3.1. Asymptotic behaviors of the covariance function
	3.2. Locally asymptotically self-similarity and fractal dimension
	3.3. Short-range dependence property

	4. as a velocity process
	5. Casimir energy associated with
	6. Concluding remarks
	Acknowledgments
	Appendix A. The long-time asymptotic behavior of the mean-square displacement
	A.1. Ordinary derivative
	A.2. Fractional derivative

	Appendix B. The finite temperature free energy of the fractional
	References

